Why do I assess? Construction and validation of the Teachers’ Conceptions of Assessment scale (CoVI)
DOI:
https://doi.org/10.6092/issn.1970-2221/19258Keywords:
assessment for learning, assessment as learning, sustainable assessment, teachers’ conceptions, validationAbstract
The study outlines the construction and validation process of the Teacher’s Conceptions of Assessment scale (CoVI), designed to evaluate primary and secondary school teachers’ perceptions of student learning assessment purposes. The validation sample comprises 1,545 serving teachers nationwide. The CoVI scale, subjected to both exploratory and confirmatory factor analyses, demonstrates robust psychometric properties and encompasses the following dimensions: assessment as accountability (Acc), verification of learning outcomes (AoL), teaching and learning improvement (AfL), and self-regulation and sustainability of learning (AaL). The scale addresses a gap in available instruments in the field by focusing on the specificities of different assessment approaches, including AfL and sustainable assessment, which have been less empirically explored.
References
Assessment Reform Group (ARG) (2002). Assessment is for learning: 10 principles. Research-based principles to guide classroom practice. https://assessmentreformgroup.files.wordpress.com/2012/01/10principles_english.pdf
Bartlett, M. S. (1954). A note on the multiplying factors for various χ2 approximations. Journal of the Royal Statisti-cal Society. Series B (Methodological), 296–298.
Batini, F., & Guerra, M. (2020). Gli effetti della valutazione formativa sull’apprendimento nella scuola primaria. Una revisione sistematica. Pedagogia più Didattica, 6(2), 78–93.
Ben-Eliyahu, A. (2021). Sustainable learning in education. Sustainability, 13(8), Article 4250. https://doi.org/10.3390/su13084250
Bennett, R. E. (2011). Formative assessment: A critical review. Assessment in Education: Princi-ples, Policy & Practice, 18(1), 5–25. https://doi.org/10.1080/0969594X.2010.513678
Bentler, P. M. (1990). Comparative fit indexes in structural models. Psychological Bulletin, 107, 238–246. https://doi.org/10.1037/0033-2909.107.2.238
Boud, D. (2000). Sustainable assessment: rethinking assessment for the learning society. Studies in Continuing Edu-cation, 22(2), 151–167. https://doi.org/10.1080/713695728
Boud, D., & Soler, R. (2016). Sustainable assessment revisited. Assessment & Evaluation in Higher Education, 41(3), 400–413. https://doi.org/10.1080/02602938.2015.1018133
Brown, G. T. L. (2004). Teachers’ conceptions of assessment: Implications for policy and professional develop-ment. Assessment in Education, 11, 301–318. https://doi.org/10.1080/0969594042000304609
Cheung, G. W., & Rensvold, R. B. (2002). Evaluating Goodness of fit indexes for testing measurement invariance. Structural Equation Modelling: A Multidisciplinary Journal, 9, 233–255. https://doi.org/10.1207/S15328007SEM0902_5
Cizek, G. J. (2010). An introduction to formative assessment. In H. L. Andrade, & G. J. Cizek (Eds.), Handbook of formative assessment (pp. 3–17). Routledge.
Clark, I. (2012). Formative assessment: Assessment is for self-regulated learning. Educational Psychology Review, 24(2), 205–249. https://doi.org/10.1007/s10648-011-9191-6
Crooks, T. (2011). Assessment for learning in the accountability era: New Zealand. Studies in Educational Evalua-tion, 37(1), 71–77. https://doi.org/10.1016/j.stueduc.2011.03.002
Earl, L. M. (2013). Assessment as Learning: Using classroom assessment to maximize student learning (2nd ed.). Corwin.
Fleiss, J. L. (1971). Measuring nominal scale agreement among many raters. Psychological Bulletin, 76, 378–382. https://doi.org/10.1037/h0031619
Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and meas-urement error. Journal of Marketing Research (JMR), 18(1), 39–50. http://www.jstor.org/stable/3151312
Graham, L., Berman, J., & Bellert, A. (2015). Sustainable learning. Cambridge University Press.
Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2014). Multivariate data analysis (7th ed.). Person Educa-tion Limited.
Hattie, J. (2009). Visible learning: A synthesis of over 800 meta-analyses on achievement. Routledge.
Horn, J. L. (1965). A rationale and test for the number of factors in factor analysis. Psychometrika, 30(2), 179–185. https://doi.org/10.1007/BF02289447
Hu, L.-T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional cri-teria versus new alternatives. Structural equation modeling: a multidisciplinary journal, 6(1), 1–55.
Kaiser, H. F. (1970). A second-generation little jiffy. Psychometrika, 35(4), 401–415. https://doi.org/10.1007/BF02291817
Kaiser, H. F., & Rice, J. (1974). Little jiffy, mark 4. Educational and Psychological Measurement, 34(1), 111–117. https://doi.org/10.1177/001316447403400115
Kline, R. B. (2016). Principles and practice of structural equation modeling (4th ed.). Guilford Press.
Lam, R. (2019). Teacher assessment literacy: Surveying knowledge, conceptions and practices of classroom-based writing assessment in Hong Kong. System, 81, 78–89. https://doi.org/10.1016/j.system.2019.01.006
Levin, B. B., He, Y., & Allen, M. H. (2013). Teacher beliefs in action: A cross-sectional, longitudinal follow-up study of teachers’ personal practical theories. The Teacher Educator, 48(3), 201–217. https://doi.org/10.1080/08878730.2013.796029
Lynn, M. R. (1986). Determination and quantification of content validity. Nursing Research, 35(6), 382–385. https://doi.org/10.1097/00006199-198611000-00017
Martini, A. (2008). L’accountability nella scuola. Fondazione Giovanni Agnelli, 8.
Meade, A. W., Johnson, E. C., & Braddy, P. W. (2008). Power and sensitivity of alternative fit indices in tests of measurement invariance. Journal of Applied Psychology, 93(3), 568–592. https://doi.org/10.1037/0021-9010.93.3.568
Meusen-Beekman, K., Joosten-ten Brinke, D., & Boshuizen, E. (2016b). De retentie van zelfregulatie, motivatie en self-efficacy in het voortgezet onderwijs na formatieve assessments in het basisonderwijs. Pedagogische Studiën, 93(3), 136–153.
Pajares, M. F. (1992). Teachers’ beliefs and educational research: cleaning up a messy con-struct. Review of Educational Research, 62(3), 307–332. https://doi.org/10.3102/00346543062003307
Panadero, E., Alonso-Tapia, J., & Huertas, J. A. (2012). Rubrics and self-assessment scripts effects on self-regulation, learning and self-efficacy in secondary education. Learning and Individual Differences, 22(6), 806–813. https://doi.org/10.1016/j.lindif.2012.04.007
Pavlov, G., Shi, D., & Maydeu-Olivares, A. (2020). Chi-square Difference Tests for Comparing Nested Models: An Evaluation with Non-normal Data. Structural Equation Modeling: A Multidisciplinary Jour-nal, 27(6), 908–917. https://doi.org/10.1080/10705511.2020.1717957
Richardson, V. (1996). The role of attitudes and beliefs in learning to teach. In J. Sikula, T.-J. Buttery, & E. Guyton (Eds.), Handbook of research on teacher education: A project of the Association of Teacher Educators (pp. 102-119). Macmillan Library.
Rosseel, Y. (2012). lavaan: An R package for structural equation modeling. Journal of Statistical Software, 48(2), 1–36. https://doi.org/10.18637/jss.v048.i02
Sadeghi, K., & Rahmati, T. (2017). Integrating assessment as, for, and of learning in a large-scale exam preparation course. Assessing Writing, 34, 50–61. https://doi.org/10.1016/j.asw.2017.09.003
Sarstedt, M., Hair Jr, J. F., Cheah, J. H., Becker, J. M., & Ringle, C. M. (2019). How to specify, estimate, and vali-date higher-order constructs in PLS-SEM. Australasian Marketing Journal (AMJ), 27(3), 197–211. https://doi.org/10.1016/j.ausmj.2019.05.003
Satorra, A., & Bentler, P. M. (2001). A scaled difference chi-square test statistic for moment structure analy-sis. Psychometrika, 66(4), 507–514. https://doi.org/10.1007/BF02296192
Schellekens, L. H., Bok, H. G., de Jong, L. H., van der Schaaf, M. F., Kremer, W. D., & van der Vleuten, C. P. (2021). A scoping review on the notions of Assessment as Learning (AaL), Assessment for Learning (AfL), and Assessment of Learning (AoL). Studies in Educational Evaluation, 71, Article 101094. https://doi.org/10.1016/j.stueduc.2021.101094
Schermelleh-Engel, K., Moosbrugger, H., & Müller, H. (2003). Evaluating the fit of structural equation models: Tests of significance and descriptive goodness-of-fit measures. Methods of psychological research online, 8(2), 23–74.
Schneider, M., & Preckel, F. (2017). Variables associated with achievement in higher education: A systematic review of meta-analyses. Psychological Bulletin, 143(6), 565–600. http://dx.doi.org/10.1037/bul0000098
Scierri, I. D. M. (2021). Strategie e strumenti di valutazione formativa per promuovere l’apprendimento autoregola-to: una rassegna ragionata delle ricerche empiriche. Journal of Educational, Cultural and Psychological Stud-ies, 24, 213–227. https://doi.org/10.7358/ecps-2021-024-scie
Scierri, I. D. M. (2023). Per una valutazione centrata sull’allievo: framework teorico e primi risultati di un’indagine su concezioni e strategie valutative degli insegnanti. Lifelong Lifewide Learning, 19(42), 83–101. https://doi.org/10.19241/lll.v19i42.754
Scierri, I. D. M. (2024). Beyond formative assessment: Construction and validation of the Teachers’ Assessment Strategies Scale (StraVI). Formazione & Insegnamento, 22(1), 97-108. https://doi.org/10.7346/-fei-XXII-01-24_11
Scierri, I. D. M., Viola, M., & Capperucci, D. (2023). Gli effetti di una valutazione come apprendimento sullo svi-luppo del giudizio valutativo e sull’autoefficacia degli studenti: una esperienza nella scuola primaria. Q-Times – Webmagazine, XV(4), 290–305. doi: 10.14668/QTimes_15422
Steiger, J. H. (1990). Structural model evaluation and modification: An interval estimation approach. Multivariate Behavioral Research, 25, 173–180. https://doi.org/10.1207/s15327906mbr2502_4
Steiger, J. H., & Lind, J. C. (1980, May). Statistically based tests for the number of common factors [Paper presenta-tion]. Annual spring meeting of the Psychometric Society. Iowa City, IA, United States.
Thurstone, L. L. (1947). Multiple factor analysis. University of Chicago Press.
Tomlinson, C. A. (2007). Learning to love assessment. Educational Leadership, 65(4), 8–13.
Trinchero, R. (2017). Attivare cognitivamente con la valutazione formante. In A. M. Notti (Ed.), La funzione edu-cativa della valutazione. Teorie e pratiche della valutazione educativa (pp. 73–90). Pensa MultiMedia.
Tucker, L. R., & Lewis, C. (1973). A reliability coefficient for maximum likelihood factor analy-sis. Psychometrika, 38(1), 1–10. https://doi.org/10.1007/BF02291170
Vertecchi, B. (2023). Ipotesi per un esperimento. Tuttoscuola, XLVIII, 26–27.
Wisniewski, B., Zierer, K., & Hattie, J. (2020). The power of feedback revisited: A meta-analysis of educational feedback research. Frontiers in Psychology, 10, Article 3087. https://doi.org/10.3389/fpsyg.2019.03087
Yan, Z., & Boud, D. (2022). Conceptualising assessment-as-learning. In Z. Yan, & L. Yang, (Eds.), Assessment as Learning. Maximising opportunities for student learning and achievement (pp. 11–24). Routledge. [Ver-sione Kindle MAC].
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Irene Dora Maria Scierri
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License.